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ABSTRACr

We discus the problem of boundary conditions for the vorticity form of the 2-D

Navier Stokes equations and the Prandtl boundary layer equations. We present a new formu-

lation of the vorticity boundary onditions and relate these conditions to those which are

currently used in numerical algorithms. We present a finite difference scheme incorporating

the new boundary conditions for the Prandtl boundary layer equations. Numerical results are

presented.



1. Vrti ty Boundary Coodhinm for the 2.D Navlir-Stoku Equadom

In this paper we present some preliminary results concrning investigations into the issue

of boundary conditios for vortidity and the boundary generation of vorticity in the context of

the two dimensional inmpr ble Navier-Stokes equations and the Prandtl boundary layer

equations. We first discuss the origin of the problem with vortidty boundary values for the

Navier-Stokes equations. We then discus two tecniques, ome due to Chorin [3], and the

other due to Quartapelle and Valz-Gris [8], for overcoming this problem. These two tech-

niques seem very different, and yet-when incorporated into numeicl sdemes, both appear to

give reasonable solutions to the Navier Stokes equations. One of the primary motives for this

investigation was to understand why this should be so. In order to obtain this understanding,

we found it necessary to derive our own solution to the problem of boundary conditions. We

present this, and use the derivation to help explain the relationship between the two earlier

approaches. Our derivation also suggests new methods for implementing the vortidty boun-

dary conditions in numerical sdemes. This aspect will be discussed in a future paper, how.

ever, to illustrate the general idea of our approach we consider an application of our technique

to the Prandtl boundary layer equations. We present a numerical scheme for these equations

and provide some computational results obtained with this scheme. We also compare a finite

difference scheme for these equations with a scheme introduced by Chorin in [4].

The equations we are concerned with are the two dimensional incompressible Navier-

Stokes equations,

auW + 1. Vd= -VP +vu (1.1)at

V • I = 0 (1.2)

a() = 1() for e afl (1.3)

Here at is the velocity, P the pressure and v the viscosity. We assume the fluid is of constant

density equal to one. fl is the region in R2 with boundary afl. B(c) is the velocty on the
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boundary, often taken to be identialy zeo.

In the vorticity fomulation Of (1.1).(1.3) the velocity field a is taken to be the sum of a

velocity field due to am irrotationsl flow and.a velocity field due to a rotational flow. Let 4 be

the potential for the irrotational flow and IF the stream function for the rotational flow. We

assume 4 satisfies

A* - 0 1 on anl

Here it denotes the normal to the boundary

Let ca be the vorticity. By taking the curl of equation (1-1) one obtains the following

equation for the transport of vorticity,

AWL+U -V - VAu. (1.4)

Here

U W, +I) + (IV,, -'PJ (1.5)

and V' is determined from the equation

A* =-

W-0 on ail .(1.6)

The boundary condition given above for 4 and 'Pguarantee that the normal velocity

boundary condition as satisfied. To satisfy the tangential velocity condition we must also have

a* 8 - (4 i- b(z) for x a al (1.7)
an

where 'f is the unit tangent to af0.

Often the vorticity form of the equations as used in numerical computations. One reason

for its use is that the number of unknowns is reduced from three to one. Also, in many flows
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the vortidty is itself of great interest and it is desirable to compute it's evolution directly

rather than compute in the primitive variables and differentiate the result. The use of the vor-

tiety formulation is not without it's difficulties. One major difficulty is the proper vorticity

boundary conditions.

In the translation of the equations from primitive variables (1.1)-(1.3) to the vorticity

form (1.4)-(1.7), boundary conditions for the vortidty are not obtained. Moreover, it appears

that too many boundary conditions ae given on the stremn function. (Both those in (1.6) and

(1.7) must be satisfied.) However, a bit of thought reveals that the freedom in choosing the

vorticity boundary onditions ocurs precisely because the stream function is over determined.

For, unless there is some mechanism for manipulating w in the interior of the domain, the

problem which defines T will not, in general, be well posed. It is therefore not surprising

that a common thread which runs through all numerical implementations is the manipulation

of the vortiaity, usually near the boundary, in a way which insures that both (1.6) and (1.7)

are satisfied. Ho*w , apart from this similarity, the munmerical techniques for overcoming

this difficulty can appear quite different. We shall consider two approaches in use. There are

others, most notably those which use the relation between i' and w in (1.6) and (1.7) at

points on the boundary. For a review of these, and of the results which can be obtained with

them, see [61 and [7.

One approach to solving the problem of boundary conditions is that which is implicitly

used by Chorin in (3]. In that paper, he utilizes the method of fractional steps to solve equa-

tions (1.4)-(1.7). The method is to advance for one timestep the solution to the Euler equa-

tions:

a. + O.V (1.8)"

(with U defined by equation (1.5) and WI determined only by (1.6)) followed by one timestep

of the solution of the heat equation
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ak=VAw . (1.9)

Thic vortex blob method a used to advance the solution for the Euler step, and a random walk

technique is used to simulat the diffusion step. In the solution of the Euler equations, (1.8),

boundary onditions on the vorticity are not needed since U.- it = 0. In the solution of the

heat equation (1.9) boundary conditions are needed, and one of the novel ideas contained in

aorins paper is the method by which the boundary values of vorticity ane obtained.

After one step of the Euler equations, the interior vorticity distribution will not neces-

sarily iduce a velocity field which satsies the tangential velocity boundary condition. If 6 is

the distributtion of vorticity after one time step of Euler, and (4, g) is the velocity constructed

from this dibuitionthen (fi, f) - I * b(s) for s a all. Ciorin's idea is to introduce vorti-

city on the boundary in an amount whichancels this error. Specifically, if the boundary is

divided up into segannt of length h then the vorticity introiduced per segment is

(fi4,- ~j

where si is the cetrof the ith segment on t boundary. This vorticity is then allowed to dif-

fuse into the region and participate in the evolution of the flow.

A common conpt in fluid mecanics is that vorricity is "produced" at object boun-

daries. As discussed by Batchelor in [2], this production occurs so that the external or outer

fluid velocity will match the velocity of the object. An attractive feature of Osorin's method

is that it mnimics this process of boundary generation of vorticity. Computations performed

with this method (and an improved version incorporating boundary layer modelling [4]) sug-

gest that thi algorithm generates a good approximation to the solution of the equations

(1.4)-(1.7). From this fact we conclude that boundary vorticity generation, as understood

from the nature of the physical problem, is intimately related to the mising boundairy condi-

tions for the vorticity transport equations.
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The second approach is tha due to Quartapege and Valz-Gris [8] and is more matbemat-

ically rather than physically motivated. Essentially, they pose the following question "What

are the conditions on the vorticity so that the stream function constructed using (1.6) also

satisfies (1.7)?" The answer is contained in the following theorem presented in their paper,

lheori. AT = -w in 1, ', = a(s) and b(s), if and only if

fw -da fi-b(s) - a(s)--ds (1.10)

for any function q harImonic in fl.

In particular, if a(s) = 0 and a no slip condition is specified, b(s) = 0, then the vorticity

must be orthogonal to all harmonic functions defined in the domain.

Using this result, Quartapelle and Valz-Grs overcome the difficulty of finding explicit

boundary conditions on the vordiity by adjoining the constraint (1.10) to the equations for

vortlicty transport (1.4). Their implementation consists of advancing the solution of (1.4) one

time step without regard to the constraint and then projecting the result onto the component

which sadsles (1.10). It is for this reason that we refer to their approach as the projection

method. Details of their numerical implementation and some nice computational results con-

cerning the driven cavity problem re presented in [9].

Aside from the fact that both approades are used to solve the same set of equations,

the techniques do not appear to be related. Chorin's scheme effects the vortiaty on the boun-

dary, while in the method of Quartapelle and Valz-Gris, the interior vorticty is effected as

well. In order to relate the two, we found it necessary to obtain a precise set of boundary

conditions for the vorticity. Our derivation is motivated by the observation of Quartapelle

and Valz-Gris that one should consider the evolution of the vortcity as a constrained evolu-

tion. Instead of explicitly finding the constraint on the vorticity and adjoining it to the equa.

tions as Quartapelle and Valz-Gris do, we precede by finding conditions which insure that as
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the vorticity evolves the -ontrin will atomaticaily be satisfied.

We begin by expressing the "extra boundary condition (1.7) as a constraint on the vorti-

city. For tis purpose we use the Green's function, G(xs), for the domain fl This function

is the solution of

AG(x,.) -(s) zxaf( G(xs) =O 0 z t a

where 8(s) is a Dirac delta function located at s a n.We have

'P~) -f G(xsa)w(st)ds

aa

7~-f G(xsa)w(s,t)ds b(x) for ze a (1.11

To find boundary conditions which insure that solutions of (1.4) incluce a stream, func-

tion which satisfies both (1.6) and (1.7), we find boundary conditions which guarantee that the

derivative with respect to time of the contraint (1.11) vanishes. We require

a -(-L-f G(xs)c*(s,t)di + b(x)) = 0 for x a al

If we use the fact that ca is a solution of (1.4) and the Green's identity

=fG(xs)A&w(s,tid -f N xctwLtda
n an an

we find

a a f G(x,*)ca(a,tds = 0

a .f G(xs) aw(s,t)ds = 0

a .Lf G(xs)(-10 -Vw(s,t) + v,&w(s,t))ds 0

OnI



7

- v-i-- G(xs)taw(s,t)ds - -L-f G(xs)U - Vto(s,t)ds

- a (x )(t)d. = Lf G(x,s)U. Vw(s,t)dr (1.12)

This is an integral-differential equation which determines the boundary values. Values

satisfying (1.12) and used as data for (1.4) will insure that the time derivative of (1.11) will be

zero. If we assume that the initial vortcity satisfies (1.11), then we will have insured that this

constraint, and hence (1.7), is satisfied for all time.

If one uses the boundary conditions (1.12) with (1.4)-(1.6) then the resultant vorticity

will also satisfy (1.7), and hence will satisfy the constraint as formulated by Quartapelle and

Valz-Gris, (1.10). Conversely if one solves (1.4) with (1.10) explcitly satisfied then the vorti-

city will satisfy (1.12). We conclude that Quartapelle and Valz.Gris, by enforcng (1.10)

explicitly at every timestep, are implicitly implementing the boundary conditions (1.12).

The connection between the boundary conditions (1.12) with the technique due to Cho-

rin is less dear. If one considers finite differenc methods for (1.4)-(1.6) using (1.12), then

one finds that they have the structure that the boundary vorticity is obtained by solving an

integral equation with a fordng function which is proportional to the error in the tangential

velocity induced by one step of Euler flow. Rather than get into the details of the numerical

schemes, this result can by illustrated by considering an explicit scheme which is discrete in

time and continuous in space:

WOk +-I - Wk
8t = -U" Vw" + VAwk (1.13)

Boundary values of vorticity are needed in the evaluation of the Laplacian on the right

hand side of (1.13). These values can be approximated using (1.12). The right hand side of

(1.12) is evaluated using the solution at time k8t and then the left hand side is solved for the

boundary values. If one uses the expression for one step of Euler flow
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+_ U -U Vwk (1.14)
Bt

to apprommate the convective terms in the right hand side of (1.12), one finds

1 -a fG(XS. ) k(S,t)d, - Z- -k +1 - k d
11 T-f an1 f 5:)(-La

= Z1.LfGqzs) Qk + 'ds - -L G(xs) wk)ds
f8 aan

Thus the right hand side of (1.12) has the interpretation of being the difference in the tangen-

tial velocity at the boundary between that at time kSt and that induced by one step of Euler

flow. If the tangential velocity boundary condition is sa&fied at time kBt, then the right hand

side is just proportional to the error in velodty induced by one step of Euler flow.

The incor on of boundary conditions (1.12) has the flavor of that utilized by Cho-

in, however, in Chorin's scheme one does not solve an integral equation to determine the

boundary vortiity. We imagine that Cborin's method of constructing the strength is an

approximation to the inversion of the integral equation on the left hand side of (1.12). A

detailed analysis has yet to be carried out. For a related set of equations, the Prandtl boun-

dary layer equations, it is very dear that Corin's vorticity creation is equivalent to the imple-

mentation of vortidty boundary conditions. For a further discussion of this latter case, see

the folowing section.

0 conclude, one should view the process of solving the Navier-Stokes equations as a

problem of solving a set of equations subject to a constraint. Quartapelle and VaIz-Gris's

technique is to explicitly adjoin the constraint to the vorticity evolution equations. Their

numerical implementation takes the form of a projection method. Alternatively, one can

incorporate the boundary conditions derived above. These conditions will insure that if the

constraint is satisfied initially, then it will be satisfied for all time. We believe Chorin's scheme

to be an approximation to these boundary conditions. Thus the schemes have the same goal,

that of evolving the vorticity in such a way that the strean function satisfy boundary

.* .
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conditions (1.6) and (1.7), but they differ in the man=e in which this goal is achieved. T1his

observation explains why such different tedhniques applied to the same set of equations can

both yield reasonable solutions.
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2L 3mb for the = Prani Dmhdiry Layw Equahams

In this section we apply the ideas of the first section to the Prandl boundary layer equa-

tions. This set of equations, which we shall use to describe lIna flow over a half-infinite

flat plate, is a simpler set of equations than the 2-D Navier Stokes equations, and yet when

expressed in the vorticity formulation possesses the same problems with vorticity boundary

conditions. We shall derive the continuous boundary conditions for the vorticty, and then

implement a numerical method using these boundary conditions. Results of computations with

this numerical method will be presented. A similar disason conerning the implementation

of numerical methods for the 2-D Navier Stokes equations will be presented in a forth coning

paw [1].

In the vortity form, the Prandtl boundary equations are

am + a- VW =I,- (2.1)

u = -. (2.2)
ay

= UO + fgo(xsJ,)ds (2.3)
y

- .. ,,(x,.st) diS (2.4)

with boundary conditions

U=v=0 aty0 x>0 (2.5)

u Uo at y +c (2.6)

lire (u,v) is the velocty and ca the vorticity. The domain is the quarter plane 0 s x s

and0sy s .

AR MAAA



As is the cue with the Navier Stokes equations, when one reconstructs the velocity field

from the vortidty, it is not automatic that the boundary condition on ui in (2.5) will be satis-

fied. Similarly, boundary conditions necessary to dose equation (2.1) are not given. We pre-

cede, a in the first section, to derive boundary conditions by expressing the condition on u in

(2.5) as a constint on the vorticity and then setting time derivative of this constraint equal to

zero. Using (2.3), the constraint on the vorticity is

UO +fo(xjs,t)ds = 0 z>O0 and t aO (2.7)
a

Thus werqie

a w(,t)ds 0
at 0

fASL-(xsi,t)dii = 0
Sat

o a29

-afla -Vwds (2.8)
ay V 10

(2.8) is the desired boundary condition. We now consider a numerical method for solving

these equations which incorporates these boundary conditions.

Our computational domain is the rectangular region described by the points (x, y) such

that 0 :sx~ x and 0 sy sy. The mesh weuse isrectangular with widths dxand dyin

the x and y direction respectively. The values of the vorticity and velocity are computed at

the grid points (idx, jdy) and are designated by wij uij and vjwith 0!si :sm and

0 S i S n. To approximate (2. 1) we use a one step explicit method (Euler's method) to

advance the solution in time, and approximate the advection term a -Vw using a second order

upwind differenaing scheme due to Coleila [5]. (We believe the results are relatively



12

independent of the advection sbe used.) The second derivative term wa approximated by

central differns. Our schemne is thus expressed by

Cok+ I - W

ji . Afj(ak, cak) + DZ+D;WtJ

where A,,(ak, 4at) is the second order approximation to the convective term in (2.1) and

DD jw = i, 1 -
2

0g (2.9)

To construct u we use the trapezoidal rule to approximate the integral in (2.3). We

assume no vorticity above the line y = y., and hence u - U0 for points above this line. For

the remaning points (j :S n) we use

U = LT0 + 'I (i + faio+ 1) dy(2.10)
pMi 2

v is approximatedusn

=i - ( g i~-h - to + UI.J+1 Ui...y.l) dy (2.11)

i.e. a trapezoidal rule approximation to (2.4) in which central differences are used to approxi-

mate the derivatives of u. At points on the left and right computational boundaries second

order one sided differences are used in (2.11) instead of central differences.

It remains to specify the boundary conditions used for the vorticity. At the left edge of

the computational boundary, the inflow side, we assumed that there is no vorticity immedi-

ately upstream At the right edge of the computational boundary we assumed outflow boun-

dary conditions -i.e. the vortidity is unspecified at points just outside of the computational

domain. At the top and bottom of the domain we specified the normal derivative of w. This

data wa incorporated into the diff erence stencil using the method of fictitious points. For

points on sudh boundaries, the central difference occurring in (2.9) uses a point just outside

the computational domain. This point is eliminated by using the normal derivative boundary
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condition. For examiple, at points on the plate, the second derivative term is approximated by

Dy+DT(*j, M -~ - 2%,o _ 2 ±e.o
dy2  dy ay

For the data at the bottom we used

Oa+ 1 "Av45k, wk) + 4 ,Q~alWk)-~;-..o~~-]d2 (2.12)

i.e. a discrete analog of (2.8). At the top we used the boundary condition -. =0. T"hisa,,
wa chosen bemause it insures that the boundary condition ui = 0 at y = is satisfied exactly

by the discrete scheme. Thiis fact can be verified by directly calculating the difference in the

velocity at the plate induced by (Okl and (a'. The procedure is a discrete version of the argu-

mzents used to find the conditions that the time derivative of the constraint (2.7) vanish. An

uppe boundary condition appears, however, because the computational domain is finite. The

dependence of the velocity at the plate upon the far field boundary condition illustrates the

point that one must be careful about the numerical implementation of such schemes in

unbounded domains. T"his problem with far field boundary conditions is also discussed within

the context of the Navier Stokes equations in (1].

Our computational results correspond to a parmeter selection of v = .2, xr. = 2.0,

y. =4.0, rdy -. 1,t -12, and theonset velocity U 0 =1.0. The values of param-

eters V, UG, z.,, and y. were selected to insur that the majority of the vorticity was confined

to the region y s y., when 0 s z -- z.. The timestep was chosen so that

bt < min(-di- AA). No instability was observed for this choice of parameters.
2v' U U0

The use of the boundary condition (2.8) assumes that the initial vortioity induces a velo-

city field which satisfies all of the boundary conditions. Thie initial distribution of vorticity

used,
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U0,,!o- i =O o..,,
2dy

j~o i-1..m o<jsn

satisfies this assumption. This chaoice of initial conditions corresponds to impulsively starting

the fluid at time t-0 with a velocty U0.

The devlopm of the boundary layer is depicted in figures 2.1(a) to 2.1(c). At time

t - 0 the velocity is uniform with value Uo except at the surface of the plate where it is zero.

At a later time, t - 2.5, a typical boundary layet profile is emerging near the leading edge.

Further down the plate the velocty field is still uniformly horizontal, as the upstream influ-

ence is not felt. The fluid is retarded, however, because of the diffusion of vortcity from the

wall. At a much later time t = 10.0 the solution has reached steady state and the boundary

layer profile is depicted in figure 2.1(c).

A steady state solution of the equations is the Basius solution. This is a solution which

uI
is self similar with a similarity variable -1 - y(!-)2 , i.e. the steady state solution (u,v) is

Jxv

given by

U(X'y) = "b(1) V(z'y) = Vb(11)

whom (ub(i),vb(-1)) is the Elsus solution. A comparison of the seady state profile and the

BRsius s obtained fom [101 is given in figure 2.2. In this figure, the u component of

the computed velocity is shown usig arrows, while the u component for the corresponding

Ruins solution is denoted by the solid line. The solution is plotted for positions x=.5, xf 1.0

ad z-1.5 along the plate. The differene between the computed solution and the Blasius

solution is extremely small.

To see more dearly the acuracy with which the Blasius profile is approximated, we

show in figure 2.3 a plot of the difference between the computed u velocity and the u velocity
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of the Blasius solution. The results are plotted verse the similarity variable -n so that each

profile can be compared with the other. The velocity profile which is most in error is that

near the leading edge of the plate, x=.5. This is to be expected since the number of points

per profile is less at this station than at stations further down the plate. However, the max-

imum relative error of all the profiles is less than 1%.

These results demonstrate that it is possible to incorporate the boundary condition (2.8)

into a numerical scheme and obtain accurate anwers. Furthermore, this incorporation can be

done within the framework of an explidt method. (he has been some doubt about the pos-

sibility of this.) The use of an explicit method is limiting because of the time step restriction.

A semi-implidt finite difference scheme has been developed and used to obtain results which

agree with those given above. We chose not to discuss the scheme because it is a bit more

diffictlt to describe and not any more illuminating a an example than the purely explict

scheme.

We conclude this section by discussing the relation between a method introduced by

orin for solving the Prandtl boundary layer equations and an analogous finite difference

scheme. In [4], Chorin uses the method of fractional steps and vorticity boundary creation to

solve equations (2.1).(2.5). The discretization used is based on computational elements which

are segments of vortex sheets. The bowc timestep, ignoring the precise implementation

details, ae as follows: An approximate solution of the invisad equations is advanced one

time-step (equation 2.1 without v). This leads to a vorticity distribution which induces a velo-

cty field which does not satisfy the tangential boundary condition on the plate. If the velocty

field at location iII on the plate is U, then a sheet of strength 2U, is created on the boun-

dary. This sheet is then allowed to participate, with the sheets already in the fluid, in a ran-

dom walk. This random walk approximates one step of the evolution of the viscous terms of

the equation.
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Consider the following fractional step sdeme which uses the finite difference approzi-

mations given previously,

Bt - 4 % ~ k k (2.13)

COIP - -~+ a+ (2.14)
8t i

The normal derivative boundary condition

110 -1 ]dy2.J,2 k (2.15)

is incorporated into the finite difference stencil occurring in (2.14). The upper boundary con-

dition is ?a 1j, - 0. One can show, as with the explicit scheme given previously, that if the

velocity field induced by Wk satisfies (2.5) then the velocity induced by wdk+1 satisfies (2.5) as

well.

The effect of the boundary condition (2.15) is to induce vorticity on the boundary of the

comptatinaldomain. One can isolate the amount of vorticity induced by this boundary con-

dition by considering one step of equation (2.14) using zero initial data and boundary condi-

tion (2.15). Tis is t vortielty Udefined by

with initial condition cq,- 0 and boundary condition (2.15). Workin through the algebra

we find that 9 is non-zero only at the lower boundary, and is given by

M 28t AI., w(h~k) + 4.(k~)(.6
dy 0 2

Uf we use the expression for Ajj from (2.13) in (2.16) we find that



17

22
U0- -U (2.17

dyp.

H~e we awe makcing the usumnption that coatj satisfies (2.5) discretely, i.e.

UO * 11 2 P dy - 0

The quantity U, in (2.17) is the u velocity at the point ide on the plate wich is induced

by 6" Fromt the deaiin of rd" we see that this is the sdip induced by one step of Euiler

fid 1 .. 2camsponcis to a computational elemnent wich indiuces a Jumip in

velocity af 21Ji, i.e. a sheet with strength Mi1. This is precisely the strength of the vortex

sheet which is introduced by Coarin in his schemne. Thus, there is exact agreement in the

amount of voraity whicha sadded at each tim step. We believe that this as a resnarkable

result in light of the difference in the types of discreizatioms used.
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Velorty vector plots at times t = 0.0, t = 2.5 and t- 10.0

in (a).(c) respectively
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Figure 2.2
Comyrisn of the computed u velocity component (ar-rows) with the

Blasius solution (solid line).
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Figure 2.3
W~fere=c between the omputed u velocity component and the Blasius
solution at stations z'- 0.5 (solid line), x - 1.0 (short dashed line),

x - 1.5 (long dashed line).
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